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Abstract

This paper focuses on the prediction of the dimensionless retention time of proteins (DRT) in hydrophobic interaction chromatography (HIC) by
means of mathematical models based, essentially, only on aminoacidic composition. The results show that such prediction is indeed possible. O
main contribution was the design of models that predict the DRT using the minimal information concerning a protein: its aminoacidic composition.
The performance is similar to that observed in models that use much more sophisticated information such as the three-dimensional structure
proteins. Three models that, in addition to the amino acid composition, use different assumptions about the amino acids tendency to be expos
to the solvent, were evaluated in 12 proteins with known experimental DRT. In all the cases analyzed, the model that obtained the best resul
was the one based on a linear estimation of the aminoacidic surface composition. The models were adjusted using a collection of 74 vectors
aminoacidic properties plus a set of 6388 vectors derived from these using two mathematicdltoedsis and self-organizing maps (SOM)
algorithms. The best vector was generated by the SOM algorithm and was interpreted as a hydrophobicity scale based partly on the tendency
the amino acids to be hidden in proteins. The prediction error (\MSibtained by this model was almost 35% smaller than that obtained by the
model that supposes that all the amino acids are completely exposed and 40% smaller than that obtained by the model that uses a simple correct
factor considering the general tendency of each amino acid to be exposed to the solvent. In fact, the performance of the best model based on 1
aminoacidic composition was 5% better than that observed in the model based on the three-dimensional structure of proteins.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction non-polar groups on the surface as the result of a polypeptide
chainincorrectly misfolded or damaged. Also, these characteris-
Hydrophobic interaction chromatography (HIC) is a tech-tics allow the identification of analogous proteins or degradation
nique used for the purification of proteins, which is based orproducts, in addition to other contaminants. In the same way, this
the hydrophobic properties of the molecular surface and theisensitivity allows its use as an analytical tool to detect confor-
interaction with a stationary matrix of non-polar molecules.mational changes in proteifiz—6].
Therefore, the separation of a protein mixture takes place when At present time, HIC is used in most industrial processes for
differences occur in the degree of interaction between proteingrotein purification as well as in laboratory scale applications.
and the stationary matrix. The magnitude of these difference€ommonly, it is used as a stage within the protein purification
will affect the resolution and purification levels achieved by thisprocess, that follows ion exchange chromatography. It has been
techniqud1]. shown that the rational design of industrial protein purification
The HIC principles show high sensitivity to changes in theprocesses normally requires an HIC stfigje
tertiary structure of proteins as, for instance, the exposition of On the other hand, hydrophobicity plays a key role in the
definition of a protein’s behaviour and this property is consid-
ered as one of the fundamental forces that govern protein folding
* Corresponding author. Tel.: +56 2 6784716; fax: +56 2 6991084. [8]. Moreover, the hydrophobic characteristics of a protein per-
E-mail address: jsalgado@ing.uchile.cl (J.C. Salgado). form a fundamental role defining its behaviour in solution and its
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interaction with other biomolecules. The hydrophobicity valuewhererg corresponds to the time where the peak of the chro-
of a protein can be assigned by many different methodologiematogram takes placg,to the time when the salt gradient starts
either experimental or theoretical. A method for establishingands to the time when the salt gradient finishes.

the hydrophobicity of a protein consists in considering the rela- DRT values used in this work were obtained in a 1 ml Phenyl-
tive contribution of each one of the amino acids present on th&epharose Fast Flow column using 2M ammonium sulfate as
surface, defining an average surface hydrophobicity (ASSH) the eluent.

Using this definition, Lienqueo et al. found that the ASH can
be correlated satisfactorily with retention times in hydrophobic .
interaction chromatograpHit0]. In this case, the aminoacidic 2-> Mathematical models
hydrophobicity scales that best modelled the behaviour were

those of Miyazawa-Jernigda1] and Cowan-Whittakef2]. 2'2;|_]h Dgg_l? 6”0deé_lqver.ag.i S“trf atche f roperties dby Li .
In order to calculate the ASH, it is necessary to have the e modetis simiiarto that proposed by Lienqueo &
@. [10]; however, our model considers awider set of aminoacidic

three-dimensional protein structure. Frequently this data do€ . -
not exist, and the only information available is the amino acidProrerties and not only hydrophobicity scales. We modelled the

sequence. In these cases, to estimate the surface Composit%mensmnless retention time (DRT) using average surface prop-

of the protein, it is necessary to start with the constructiorE €S (ASP) of proteins by the following equation:

of three-dimensional models, usually using the methodolog 2
of comparative modelling13], or in some cases through the BRT = bo + bar + b2 @)

development of Ab initio models. As these methodologies ar%vhere]“ corresponds to the ASP of the protein ando the

complex and time consuming, it would be desirable to investi-_ . . ! )
gate amethodology by which retention time could be determine?djustable coefficients of the quadratic model obtained by the

when only the protein aminoacidic composition is available. east square procedure. Thef a protein was computed assum-

Some features of proteins can be predicted based on thdl9 that each amino acid on the protein surface contributes,

aminoacidic composition. For example, it has been reporteg:Oport'o.na"y ]EO s aiundadr?ce, to :]he pro_pertlis asioczted 0

that the prediction of the protein’s secondary structural conten € protein surfact9]. Accor N9 tothe prgvpus ypothesrs,

[14], and the protein structural clad$b] can be carried out suc- can be calculated by the following equation:

cessfully from its aminoacidic composition only. In a previous .

paper, we investigated the prediction of ASH calculated with thd = Z’ i9i (3)

hydrophobicity scales of Berggren and Cowan-Whittaker using €4

mathematical models base_:d onthe aminoacidic compos_if[ion aNfhereA is the collection of the 20 possible amino acids and

measuremgn_ts of the amino ac_lds tendency to expo§|t|9n. q% is the ith component of an aminoacidic property vector

found that it is possible to predict the ASH of a protein in an(APV). Lienqueo et al. used equal to a hydrophobicity scale

acce_p'FabIg degree starting from it; aminoqgidic compositiond) for the modelling and prediction of DRT. They found that

obtaining in the best casea co_rrelatloq coeffm@nt of_O[&B!i_ amongst a diversity of hydrophobicity scales, the best scales for
Therefore, the main objective of this paper is to investigat

She prediction of DRT were those of Miyazawa-Jernigan and
if it is possible to predict the retention time of a protein in HIC b 4 9

v f " X idi i . ot h Cowan-Whittaker. Here, however, additional properties were
on yt.rorln ! s;mlunoam Ic composition using appropriate math-, gigered. Therefore, the expressions represented byZqgs.
ematical models. and (3)correspond to a generalization of the equations used by

Lienqueo et al. Finally, the variable, fepresents the fraction

2. Materials and methods of surface area occupied by the amino acids of clas® it is
given by:
2.1. Materials
R S;
Twelve proteins with known dimensionless retention’’ = m (4)

time (DRT) and three-dimensional structure were used:

Cytochrome C (1HRC), Ribonuclease A (1AFU), Myo- wheres; is the sum of the accessible surface area (ASA) for all
globin (1YMB), Conalbumin (10VT), Ovoalbumin (1OVA), the amino acids of class The ASA was calculated using the
Lysozyme (2LYM), Thaumatin (1THV), Chymotrypsinogen software STRIDE from the three-dimensional structure of the
A (2CHA), B-Lactoglobulin (1CJ5),a-Amylase (1BLI), a- proteins[17].
Chymotrypsin (4CHA),a-Lactalbumin (1A4V). DRT values
correspond to those used by Lienqueo et aJ10j.

Briefly, DRT corresponds to the dimensionless protein reten2-2-2. DRT I model—aminoacidic composition
tion time observed in a hydrophobic interaction column, calcu- [N the case of the models based on the aminoacidic com-

lated according to: position of the protein,I" is estimated without using the
three-dimensional structure of the protein. Three linear mod-
DRT = IR—To (1) els described and analyzed in a previous paper were used

tt — 1o [16]-
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DRT I model supposes that all the amino acids are completelgnalyzed in this work do not consider the data provided by the
exposed, s@’ is estimated by the following equation: amino acid withy; equal to zero.

The determination af; coefficients of Eq(5) was carried out
by means of a least square adjustment on a set of 1982 proteins
(working database) with known three-dimensional structure
[16]. This set was derived from the non-redundant protein selec-
wherec; (i from 0 to 21) corresponds to the parameters of the lintion (identity cut-off 25%) published by Hobohm and collabora-
ear model obtained by the least squares procediséhe ratio  torsin December of 20(29]. This subsetwas constructed elim-
between the length of the protein sequence and the maximurnating the membrane proteins. The three-dimensional structures
length observed in the working database. The va!ueo“rre- were obtained from the PDB databd28]. Thec; coefficients
sponds to the fraction of the maximum accessible surface of theere determined as the average observed on 100 repetitions
amino acids of classwhen they are totally exposed, defined by: using different randomly generated subsets.

20
' =co+ Zci&! + co1l (5)
i=1

al = M (6) 2.3. Collection of aminoacidic property vectors (APV)

b Y e an)Smax

A collection of 74 aminoacidic property vectors (APV) was
used. This collection covered a wide spectrum of physical,
chemical and biological aminoacidic characteristics, amongst
them: molecular weight, bulkiness, hydrophobicity scales, aver-
age solvent accessibility, secondary structure preferences, codon
numbers, etc[11-12,21-6Q] All members in the APV col-
dection were mathematically scaled at the interval [0; 1]. This
scaling procedure was carried out so that values 0 and 1 were
associated to the minimum and maximum values in the original
scale, respectively. The hydrophilicity scales were transformed
2.2.3. DRT Il model—aminoacidic composition and to hydrophobic scales assigning 0 to the most hydrophilic amino
exposition factor acid and 1 to the most hydrophobic, the value for the rest of

The DRT Il model incorporates a correction factor that con-the amino acids was determined linearly. Other vectors non-

siders the general tendency of each amino acid to be exposgdsociated to hydrophobicity scales were not modified.
to the solvent. In previous work, we found that the best results

were obtained using a correction factoequal to an estimation 2 4 Collection of derived APV
of the probability that an amino acid of classad a RASA supe-

rior to a threshold: =0.6[16]. The RASA of an amino acid Additionally to the APV collection obtained from the liter-

in a protein is defined as the ratio between their ASA &nd  ature, a set of vectors derived from these was used. This new

their maximum ASA §maxx). Then, in the DRT Il model/™is  set was constructed using algorithms that allow analysis of the

estimated by Eq(5) whered' is replaced by:* given by: underlying topology in high dimensionality data sets. The algo-
rithms used in this work weremeang61] and self-organizing

(7)  maps (SOM)62].

wheren; is the number of amino acids of class the protein and
Smax; 1S the maximum possible value of ASA, obtained when
arranging the amino acids of clads a extended conformation
tripeptide G-X-G[18]. The values 0Bmax in A% are 113 (Ala),
241 (Arg), 158 (Asn), 151 (Asp), 140 (Cys), 189 (GIn), 183
(Glu), 85 (Gly), 194 (His), 182 (lle), 180 (Leu), 211 (Lys), 204
(Met), 218 (Phe), 143 (Pro), 122 (Ser), 146 (Thr), 259 (Trp), 22
(Tyr), 160 (Val).

VliSmaxiai

gl — __ remaxir
1
2 je Al jSmax o

wherew; is the exposition factor for the amino acid of class ~ 2-% 1. k-Means algorithm ) )
Thek-means algorithm can be described as a method to split

a data set it groups. Each group is represented by a prototype
vector, which corresponds to the centroid of the vectors that
belong to it. Given a fixed number fprototype vectors at first
located randomly in the space, the objective of this algorithm
is to move the prototype vectors, so, for instance, the sum of
the distance between each prototype and the set of vectors that
it represents is minimized. If the number of partitions selected
is suitable, it is possible to suppose that each prototype vector
Al niSmaxiBi + ni synthesizes in some way the characteristics of its group.

T At Smax By 1)) ® iy .
2.4.2. Self-organizing maps (SOM) algorithm
wherepg; andn; are the coefficients of the linear model between In the case of the SOM algorithm, the basic idea is simi-
S; andn;Smax; calculated for all the amino acids of claggesent  lar, although in this case, the prototype vectors are, in addition,
in the working database using the least squares proc§tblre = mapped to an ordered structure usually bi-dimensional called
By definition, the sum of coefficients i5 one, so these coeffi- Kohonen map. The algorithm objective, however, is more ambi-
cients conform a linear depending system. Therefore, the modet®us than in the case of themeans algorithm, since the bi-

2.2.4. DRT IIl model—aminoacidic composition and linear
estimation of the surface

Finally, in the case of the DRT Il model, we establish a linear
relationship amongst the AS$ for all the amino acids of class
i and the maximum possible ASA defined g6max;. Then, in
the DRT Il model,I" is estimated by Eq5) whend! is replaced
by a"' described by:
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dimensional structure must maintain the topological relationghe data is not considered. The model determined by means of
observed in the multidimensional space. In this way, if two prothekth adjustment is used to calculate the prediction of the DRT
totypes are centroids of two groups of similar data, the map proteink, denoted bﬁ_k, where—k means that théth
would have to maintain this relation locating these prototypes iyjement has been left out. So. the MR obtained calculating

the same zone or neighborhood in its structure. ~the average on the collection dfproteins as indicated in the
Both algorithms can be trapped in local minima, so their Perfollowing equation:

formance will depend to a great extent on the initial location

of the prototype vectors. For this reason, in the case okthe 1N I

means algorithm, each execution was repeated 100 times WiMSE;x = —Z(DRTk —DRT; ) (11)
different initial vectors. Since the SOM algorithm is very inten- Nk:l

sive in computational time the repetitions, in this case, only took

place 20 times. On the other hand, the determination of the opt Results and discussion

mal k-value, in the case of themeans algorithm, is not trivial.

Therefore, a systematic test of all thealues between 2and 73 3 ;. Analysis of the aminoacidic property vector (APV)

was carried out. In the same way, the a priori determination of.,;;.ction

the optimal dimensions of the Kohonen map is not easy either, so

16 maps with dimensions in the following sequence were evalu- The aminoacidic property vector (APV) collection represents
ated: 1x 2,2x 2,2x 3,3x 3,3x4,...,8x9,9x 9. Finally,  the distribution of physical, chemical and biological properties
in each case, the best vector, in terms of its performance as APy, the set of 20 amino acids. These 74 vectors are distributed
in the models described in the previous section, was conservegh 5 vector space defined by their 20 components. In order to
study the characteristics of this distribution, a principal compo-
2.5. Measurement of the model performance nent analysis (PCA) considering all these vectors was carried
out. This was done setting the vectors as observations and their
The performance of the models was evaluated by means @omponents as variables.
three parameters: the mean square error (MSE), the correlation Fig. 1shows a pareto graph which details the relative contri-
coefficient (Pearson) and the Jack Knife cross-validation meapution of each principal componentin the total variance observed
square error (MSk). The MSE and the Pearson were calculatedin the collection. This contribution was related to the magnitude

using the following expressions: of the eigen value associated to each principal component. This
N graph indicates that 77% of the variability present in the APV
MSE = EZ(DRT/( _ D/Iﬁ) (9) collection is ca_ptqrgd by the first four principz_il compongnts.
N— By means of this, it is possible to reduce the dimensionality of
NY ¥ (DRT; x DRT;) — 32V . DRT, SN ,DRT;
Pearson= > k= k X k) — D k=1 kD k=1 k (10)

NS, (ORTY? — (21, DRTO? Y NS, (BRT) — (21 ,ORTY)’

where DR, is the experimental DRT of protein ﬁ is the

prediction of the DRT for proteik andN =12 is the number of the APV collection from 20 to 4 (80%) with less than a 23%

proteins with experimentally known DRT used. information loss.

The MSEk was used to estimate the prediction error of the

models when using proteins not considered in the training data

set. In this case, the size of the data set is modest, hence other 40 100

technigues of re-sampling likefolding cross-validation, boost- f 90

rap or the use of an independent test set cannot be used. The Jack g 5| /

Knife re-sampling method (leave-one-out) is a widely known / 80
70
60

methodology[63]. Actually, it is regarded as the most objec-
tive and effective tool for the evaluation of predictor models
[64,65] The mathematical principle and a comprehensive dis-
cussion about this can be found [B6]. Briefly, this method

20

104 &

Fraction of the total variance [%)]
]

consists in repeating the fitting of the model as many times as ] 40
the size of the data set, leaving in each occasion one element out o H RIS T T
of the calculations. Thus, in each step, the error of the model 0 5 10 15 200

Fraction of the accumulated total variance [%]

for the prediction of the element that was left out is calculated. Principal component [-]
At the end of the process, the final prediction error of the model|

i timated the aver fth rediction error of h IFig. 1. Pareto plot of the variance contributed by each principal component
S estimated as the average o € prediction error or eac egf)tainedfromthe principal component analysis of the collection of aminoacidic

ment that was left out. In other words, this process is carried 0Ylroperty vectors (AVP). The variance was obtained from the eigen value asso-
systematically so that in thigh adjustment, théth element of  ciated to each principal component.
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6 = : = = = (26). The scatter plot dfig. 2suggests that the APV collection
.‘ is distributed in the space of characteristics in a non-uniform

way. It is observed that the APV are grouped in clusters that are
relatively visible at first. Also, it is possible to notice that most
® [ of the members of the hydrophobicity scales category are sep-
arated from the rest, in a relatively defined cluster. That cluster
also contains three members of category two; coincidently these

o o ® T three vectors were identified in the literature as associated to
® O o) hydrophobic properties of amino acifi8,43,54]

‘@@ This analysis allowed us to observe that although the APV
associated to hydrophobicity scales was arelatively defined clus-
ter, there is considerable diversity amongst them. This diversity
4 ii may allow the construction of models with different properties
and also will serve as a good starting point to derive new mix-
tures of vectors from the original ones.

PCA-2
o
o

PCA-1 3.2. Statistical Jack Knife evaluation of the DRT 0 model
Fig. 2. Scatter plot between the two first components of the collection of
aminoacidic property vectors when it has been projected on its two principal Before analyzing the models based on the aminoacidic com-
components. These vectors were separated in three qualitative categories: plbsition, a line of reference was established. This reference
vectors bqsed qn hydrophobiciFy scal:¥, (vectors constructed from a statisti- was established through the study of the DRT 0 model that
cal analysis of different propertiey ; al the rest ®). uses the three-dimensional structure of the protein, not only
using hydrophobicity scales, considering one by one the vec-

The reduction on the dimensionality of the APV collection tors belonging to the APV collection. This model was evaluated
allowed us to construct the scatter plot showhig. 2 This fig-  for the set of 12 proteins with know experimental DRT and the
ure shows the distribution of the members of the APV collectiorresults of this evaluation are shownTables 1 and 2
when they have been projected in the two first principal direc- Table 1shows the results obtained for the five best APV in
tions of the collection (PCA-1 and PCA-2). Additionally, the ascending order with respect to the MSE. These results are con-
vectors were separated in three categories defined qualitativelsistent with those reported by Lienqueo ef&0] and they show
The first category contains all APV based on hydrophobicitythat, in general, the APV that gave the smaller MSE values cor-
scales (37); the second, all APV constructed from a statisticalespond to vectors associated to hydrophobicity scales obtained
analysis of different properties (11); and the third, all the resthrough different methodologies. However, the MgRkalues

Table 1
Effect of the aminoacidic property vectors (APV) on the performance indices of the DRT 0 model (based on the three-dimensional structure)dtidgheoptiaei
experimental DRT of the 12 proteins

No. APV Description MSEx 103 Pearson MSkk x 103
1 Miyazawa and Jerningdt1] Hydrophobicity scale (contact energy derived from 3D data) 5.812 0.946 21.016
2 Cowan and Whittak€ 2] Hydrophobicity indices at pH 3.4 determined by HPLC 6.902 0.936 21.041
3 Deleage and Rou81] Conformational parameter f@-sheet 7.572 0.929 19.465
4 Browne[26] Retention coefficient in heptafluorobutyric acid (HFBA) 7.850 0.926 16.869
5 Willson [58] Hydrophobic constants derived from HPLC peptide retention times 8.237 0.923 19.298

The five best APV (out of 74) in ascending order with respect to the mean square error (MSE) are listed. The correlation coefficient (Pearson) afmifthe Jack
cross-validation mean square error (MgJare also shown.

Table 2
Effect of the aminoacidic property vectors (APV) on the performance indices of the DRT 0 model (based on the three-dimensional structure)dtidgheptiei
experimental DRT of the 12 proteins

No. APV Description MSEx 10° Pearson MSkk x 10°
1 Wertz and Scherada7] Fraction of buried amino acid in 20 proteins 8.754 0.917 12.988
2 Granthani36] Atomic weight ratio of hetero (non carbon) elements in end groups 8.657 0.918 14.210
or rings to carbons in the side chain
3 Browne[26] Retention coefficient in heptafluorobutyric acid (HFBA) 7.850 0.926  16.869
4 Willson [58] Hydrophobic constants derived from HPLC peptide retention times 8.237 0.923 19.298
5 Deleage and Rouyi81] Conformational parameter f@-sheet 7.572 0.929 19.465

The five best APV (out of 74) in ascending order with respect to the Jack Knife cross-validation mean square erjy §dSEted. The correlation coefficient
(Pearson) and the mean square error (MSE) are also shown.
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in Table 1do not follow the ascending order that those of MSE.the amino acids completely exposed (DRT I), the next one uses
This is reasonable, since it is known that the MSE corresponds simple correction factor considering the general tendency of
to an optimistic estimation of the prediction error, produced byeach amino acid to be exposed (DRT II) and the last one is based
aloss in the predictive capacity of the model consequence of aon a linear estimation of the aminoacidic surface composition
over fitting to the training data and therefdrable 2was con-  (DRT III).
structed. This table shows the five best APV now ordered based The DRT | model reached a minimum MgEequal to
on their MSEk. 22.749x 10-3when it was constructed using the Grantham vec-
Table 2shows that, based on the analysis of the MGE tor and therefore was 1.8 times the minimum value obtained
the best APV in terms to assure a good predictive performancey the DRT 0 model (12.988 10-2). The results obtained
was the Wertz and Scheraga vector. This vector was constructeging the DRT Il model were worse. The lowest MRE
based on a measurement of the amino acid tendency to be hidd&#.839x 10~3) was obtained when using the relative mutabil-
in proteins[57]. The MSE obtained by the Wertz and Scheragaity vector proposed by Dayhof80]. The aminoacidic property
vector was 8.754 102 which meant an increase of a 50% in represented by the vector of Dayhoff allows us to affirm that it
relation to the one obtained by the Miyazawa—Jernigan vectocorresponds to a model artefact and not to behaviour defined by
Nevertheless, the MSk indicates that next to the increase in the physical, chemical or biological nature of the vector.
the MSE, a diminishment of 38.2% in the Mg&took place, With respect to DRT Il modelTable 3shows its perfor-
allowing a substantial improvement in the predictive capacity oinance when it was constructed using the same APV shown in
the model. This corresponds to an improvement with respect tdable 2 It is possible to note that the MGvalues in this table
the methodology proposed by Lienqueo et al., where the evahre not ordered in an ascending way, as, in this case, the DRT
uation of the predictive performance of the model was carriedll model was evaluated like an estimator of the DRT 0 model
out in only one protein s€tl0]. Therefore, the methodology and, of course, the quality of this approach depends strongly on
proposed by Lienqueo et al. can be considered highly biasethe APV used. For the case of the Wertz and Scheraga vector,
since it depends strongly on the criterion used to construct thtne difference in the MS§k between both models is consider-
evaluation set. On the contrary, the methodology proposed iable: DRT Ill model obtained a MSk of 25.262x 10~3, this
this paper estimates the prediction error of the model througks more of the double of the value obtained by DRT 0 model
the determination of the impact of the removal of each one ofising the same APV. On the other hand, in the fourth position
the elements in the data set in the model performance and henitceTable 3is the Willson APV. Using this vector in the DRT Il
it is more robust. model, a MSEk equal to 13.50k 103 was obtained, this is
The second place ifable 2corresponded to the Grantham 3.9% greater than the value obtained by the DRT 0 model in its
vector. This vector represents an index of atomic compositiofest case. This observation suggests the constructitaddé 4
defined as the atomic weight ratio of hetero (nhon carbon) elewhere the five better APV used to construct DRT Il model are
mentsinend groups orringsto carbonsinthe side dB&nThe  listed.
rest of the vectors are associated, in their majority, to hydropho- According to Table 4 the minimum MSBk for the DRT
bicity or exposition/hidden scales that also represents, in somé model was obtained when using the Willson APV. This

way, hydrophobic characteristics. vector represents a hydrophobicity scale based on retention
times in HPLCJ[58]. This vector obtained an M3k equal to

3.3. Modelling and prediction of the dimensionless 13.501x 10-3. This MSEx was considered quite acceptable,

retention time (DRT) of a protein based on its aminoacidic since it is only 3.9% greater than the value obtained by the

composition DRT 0 model. As in the case of the DRT 0 model, the APV

present inTable 4correspond, in their majority, to hydropho-
Having defined a line of reference, the results obtained wittbicity scales. The appearance of the Sandberg and Jonson APVs
the models based on composition follow. Three models baseid interesting, since both were derived by means of a statistical
on different assumptions about the amino acids tendency to b&nalysis on a diverse set of aminoacidic properties. In particular,
exposed to the solvent were evaluated: the first one supposes #le Sandberg vector is located in the third position and origi-

Table 3
Effect of the aminoacidic property vectors (APV) on the performance indices of the DRT Il model (the best fit using only amino acid compositiontefrinenpr
the prediction of the experimental DRT of the 12 proteins

No. APV Description MSEx 10° Pearson MSkk x 10°
1 Wertz and Scherada7] Fraction of buried amino acid in 20 proteins 18.168 0.820  25.262
2 Granthani36] Atomic weight ratio of hetero (non carbon) elements in end groups 18.980 0.811 41.441
or rings to carbons in the side chain
3 Browne[26] Retention coefficient in heptafluorobutyric acid (HFBA) 34.606 0.612  102.666
4 Willson [58] Hydrophobic constants derived from HPLC peptide retention times 7.377 0.931 13.501
5 Deleage and Roug1] Conformational parameter f@-sheet 27.346 0.711 58.317

This table maintains the APV and the order definedragle 2 so it can be compared directly. The mean square error (MSE), the correlation coefficient (Pearson)
and the Jack Knife cross-validation mean square error (JMjs&te shown.
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Table 4
Effect of the aminoacidic property vectors (APV) on the performance indices of the DRT Il model (the best fit using only amino acid compositionteftinepr
the prediction of the experimental DRT of the 12 proteins

No. APV Description MSEx 103 Pearson MSkk x 103
1 Willson [58] Hydrophobic constants derived from HPLC peptide retention times 7.377 0.931 13.501
2 Cowan and Whittak€i 2] Hydrophobicity indices at pH 3.4 determined by HPLC 9.225 0.913 15.508
3 Sandberd54] Statistical analysis of aminoacidic propertie3, 17.310 0.829 22.963
4 Abraham and Le{22] Hydrophobicity scale 8.760 0.917 23.023
5 Jonsor{43] Statistical analysis of aminoacidic propertigk, 10.068 0.904 24.016

The five best APV (out of 74) in ascending order with respect to the Jack Knife cross-validation mean square erjpy &Sisted. The correlation coefficient
(Pearson) and the mean square error (MSE) are also shown.

nally it was described by its authors as a measurement of thay its authors as a measurement of the amino acids electronic
amino acids electronic characteristics (for exampig, gnd [) characteristic§38,54]

[54]. The best vector obtained for the DRT Il model was found
when a uniform distribution was used to initialize the centroides
and it was obtained when considerihg 31. By means of this
vector, the MSEx decreases a little more than 4% with respect
to the value obtained using the Willson vector. This vector turned
outto be a centroid of the vectors of Fauchere, Willson and Hopp
[34,58,39]ordered on the basis of its distance to their centroid.

Inthis section, the results obtained by evaluating models DR‘IQ‘II of them represent hydrophobicity scales, and therefore this
vector can be interpreted as a consensus amongst them.

[, Iland 11l on the basis of a new set of APV are described. This
set was constructed with the APVs derived from the original . . .
APVs using thé&-means and self-organizing maps (SOM) algo—3'4'2' APV derived using the SOM algorithm

. Table 6shows that, as in the case of theneans algorithm,
rithms. In tota!, 6388 vectors were generated_, 5340 from th(%'he SOM algorithm was unable to find a vector that allowed an
k-means algorithm and 1572 using SOM algorithm.

improvement in the results shown by the DRT 0 model when
using the Wertz and Scheraga vector. The best prototype located
3.4.1. APV derived using k-means algorithm by means of the SOM algorithm was found when usinga77

The performance of the best vectors found usingitheeans  map built on the set of standardized APV. This vector presented
algorithm is detailed infable 5 This table shows that, in the an MSEk 11.7% greater than that obtained by the Wertz and
case of the models DRT 0 and DRT |, theneans algorithmwas Scheraga vector and corresponds to the prototype located in the
unable to locate prototypes that were able to improve the resulfgroximities of the Wertz and Scheraga vector.
shown previously. For these models, the algorithm located the The DRT | model improved its performance by decreasing
best prototype in the same position as the best vectors fourtie MSEk in 16%. In this case, the closest original vector was
previously: Wertz and Scheraga and Grantham, in the case ttfie hydrophobicity scale of Erikkson, based on the change of the

3.4. Modelling and prediction of the dimensionless
retention time (DRT) of a protein based on its aminoacidic
composition and derived aminoacidic property vectors
(APV) using k-means and SOM algorithms

DRT 0 and DRT | models, respectively. free energy in the transference of the amino acids from ethanol
In the case of models DRT Il and lll, this algorithm found to water. The DRT Il model did not present an improvement.
two vectors that allowed an improvement in the Mgl both With respect to the DRT Il model, the SOM algorithm found

cases. With respect to the DRT Il model, a vector was found thad prototype that improved the results obtained by the Willson
was able to decrease the value of Mgby almost 17%. The vector by 7.3%. This vector was found when processing the not
vector was very near to th& APV of Hellberg, and therefore, standardized original APVs by means of &« 7 SOM map.

can be interpreted as a variation of it. T#8avector of Hellberg  When analyzing the characteristics of the map generated, it was
is analogous to the3 vector of Sandberg and it is described found that this vector corresponds to the centroid of Cowan and

Table 5
Performance indices for the models on the prediction of DRT of the 12 proteins for the best APV obtained-hyeines algorithm
Model MSEx 10°  Pearson  MSk x 10° & D P Closest APV

APV Description
DRTO 8.754 0.917 12.988 50 0 1 Wertz and Scheragfa?] Fraction of buried amino acid in 20 proteins
DRT I 10.401 0.901 22.749 54 0 1 Granthanfi36] At. weight ratio of hetero elements in end

groups or rings to carbons in the side chain

DRT Il 15.331 0.850 20.553 59 0.16 0.99 Hellber§38] Statistical analysis of aminoacidic properties,
DRT Il 8.150 0.923 12.914 31 0377 0917  Fauchefa4] Hydrophobicity scale (pi-r)

The mean square error (MSE), the correlation coefficient (Pearson) and the Jack Knife cross-validation mean square ggy@aré\M8&wn. In addition, distance
(D), Pearsonk), k parameter and description of the closest APV are shown.
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Table 6

Performance indices for the models on the prediction of DRT of the 12 proteins for the best APV obtained by the SOM algorithm

Model MSEx 10°  Pearson  MSk x10° Size D P Closest APV

APV Description

DRTO 9.566 0.909 14.508 7x7 0.614 0.938 Wertz and Scherd§d] Fraction of buried amino acid in 20 proteins

DRT I 11.108 0.894 19.112 6x6 1.281 0.518 Erikksof83] AG in the transference of the amino acids
from ethanol to water

DRT Il 14.835 0.855 24.658 3x3 0938 0771 Chou and Fasma9] Conformational parameter f@-turn
calculated on 29 proteins

DRT 1l 7.739 0.927 12.332 7x7 0358 0.969  Abraham and L§22] Hydrophobicity scale

The mean square error (MSE), the correlation coefficient (Pearson) and the Jack Knife cross-validation mean square ggy@aré\d8&wn. In addition, distance
(D), Pearsonk), map size and description of the closest APV are shown.

Whittaker[12] and Abraham and Lef22] vectors, both cor- coefficient of correlation between these vectors was of 0.763,
responding to hydrophobicity scales. This suggested that thishich indicates that both vectors present differences. The anal-
vector corresponds to a consensus between these two hydrophysis of these vectors showed that both agree in the allocation

bicity scales. of the hydrophobic amino acids: phenylalanine, leucine, valine
and isoleucine. Also, both vectors tend to privilege the non-polar
3.5. Final discussion group of amphipatic amino acids, i.e. that they contain, simulta-

neously, polar and non-polar groups, as for example, tryptophan,

Table 7shows the best APVs found in this work for each methionine and tyrosine. The greater discrepancy is in the case
one of the DRT models considered. As has been mentioned, ®f the hydrophobic amino acid proline. The Wertz and Scheraga
the case of the vectors obtained by means ofktheeans and  vector assigns an almost null hydrophobicity to it, whereas vec-
SOM algorithms, these can be interpreted, in a certain sense, 8 SOM 7x 7, a medium-high hydrophobicity. In the case of
mixtures of the original APV found in the literature. In particular, the hydrophilic amino acids, both vectors agree, locating lysine
most of these were related to APVs associated to hydrophobicit§s the most hydrophilic amino acid.
scales. This fact is very important, as it is concordant with the Also, important discrepancies in the other hydrophilic amino
application in which they are being used. An exception is theaCids exist. The most important differences concern arginine
vector associated to the DRT Il model, which was interpreted agnd histidine. The vector SOM <7 tended assigning values
an expression of the electronic properties of the amino acids. lower than those found in the Wertz and Scheraga vector. The

The best models were those of the DRT 0 using the Wertfnost remarkable case corresponds to cysteine, since both vec-

and Scheraga vector and DRT Il using vector SOM 7. The  tors assign a great hydrophobic character to it. This is explained
by the fact that, although cysteine is usually classified as a

Table 7 hydrophilic amino acid, it tends to be inside of proteins forming
Improved amino acid property vectors (APV) found in this work for each onedisulfide bridges. On the basis of these observations, it is possI-
of the DRT models considered ble to conclude that the vector SOMK77 represents a synthesis
between the hydrophobic character of the amino acids and their

AA DRT 0 DRT | DRT II DRT Il 7 ,

Wertz and SOM 6x 6 k-means, som7x7 tendency to be located inside of proteins.

Scheragd57] k=59 Itwas observed that thecoefficients from Eq(5) presented,

i 1 iliti 0,

ALA 0375 0.013 0517 0519 in most cases, vanabﬂmesl ;r_naller than 5@ for the models DRT
ARG 0.321 0.633 0.000 0.026 I, I'and Ill. These variabilities were obtained from standard
ASN 0.196 0.214 0.598 0.254 deviation in all repetitions. The highest variability was found in
ASP 0.107 0.082 0.760 0.333 the coefficient associated to arginine, which in the case of the
aﬁ 8-372? 8-515’5 é-ggg 8-27835 DRT Ill model displayed a variability of 110%. On the other
GLU 0.125 0.066 0.458 0.345 hanq,TabIe.Sshows that the; coefﬂ_ments haq, in gene@l,
GLY 0.179 0.044 0.515 0.492 confidence intervals at 95% of considerable size. Coefficients
HIS 0.696 0.351 0.561 0.222
ILE 0.857 0.729 0.283 0.979 Table 8
LEU 0.821 0.235 0.302 0.941 Coefficients; from Eq.(2) for the models based on the aminoacidic composition
LYS 0.000 0.459 0.090 0.000
MET  0.804 0.297 0.475 0.781 bi DRTI DRT I DRT I
PHE 1.000 0.409 0.573 1.000 bo —53.46+21.97 —8.93+22.04 —14.98+10.29
PRO 0071 0.000 0.745 0.706 by 314.80+ 126.70 39.50- 113.30 75.32:53.78
SER 0.321 0.101 0.587 0.358 b2 —456.40+182.00  —39.55+145.05 ~ —90.15+69.75
THR 0.125 1.000 0.300 0.427 Froin 0.317 0.345 0.327
TRP 0.982 0.429 0.567 0.966 J. 0.387 0.430 0.430
TYR 0.589 0.687 0.500 0.733
VAL 0.732 0.683 0.278 0.825 The confidence interval at 95% and the rank of the varidblie which they

were obtained are included.
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Fig. 3. Scatter plots between the experimental dimensionless retention time (DRT) and DRT predicted by the DRT 0 model based on the three-stimetus®nal
of the proteins and DRT Il model based on the aminoacidic composition of the proteins.

determined with greater uncertainty were associated to DRT Table 9
The experimental dimensionless retention time (DRT) and DRT predicted by

molgizl.éshows the scatter plots between experimental DRT athe DRT Il model based on the aminoacidic composition of the proteins
those estimated by means of DRT 0 and DRT Il models. TheProtein PDB ID Experimental DRT DRT Il model prediction
plots inFig. 3do not suggest a pattern between the dispersiong,rc 0.000 0.000

and the experimental DRT. However, these plots show that DRTAFuU 0.360 0.357

0 and DRT lll share the fact that one of the greater errors is iiYMB 0.370 0.448

the zone where the most hydrophobic proteins are located. Thi&VT 0.500 0.436

observation can also be observed-ig. 4, where a plot of the SLYM 8,'?33 g.'gf;

residual error of the models for each protein is shown. Addi-jthy 0.660 0.712

tionally, the experimental DRT and the predictions carried oubcHA 0.690 0.739

by the DRT Ill model are infable 9 The plot inFig. 4shows  1CJ5 0.730 0.747

that the biggest error was located in the proteitactalbumin ~ 1BL! 0.749 0.656

(1A4V), followed by lysozyme (2LYM) in the case of the DRT 0 iiHA 8;;8 g'zgg

model and ovalbumin (1OVA) in the case of the DRT Il model.
On the contrary, in the case of the DRT Il model, the smaller

errors were found in cytochrome C (1HRC), ribonuclease A . o . . :
(1AFU), lysozyme (2LYM) anda-chymotrypsin (4CHA). A dict the retention times for a wide set of proteins, monomeric
' ' eimd multimeric and that the prediction error is not related to the

relation between the magnitude of the error and the length ci th of th 1o thei ‘ hvdroohobicit
the protein sequence was not observed, low residual errors fngth ot these, norto their average surface hydrophobicity.

small proteins such as cytochrome C (104 aa) or of greater size
like conalbumin (682 aa) were observed. This allows us to staté. Conclusions
that the DRT Il model (like the model DRT 0) is able to pre-

In this paper, the prediction of the dimensionless retention
time of proteins (DRT) in hydrophobic interaction chromatogra-

10 A\ phy (HIC) by means of mathematical models based, essentially,
— 0.8 only on the aminoacidic composition was investigated. The
% results presented in this work show that such prediction was
£06 . ) . L .
o indeed possible, with a performance similar to that observed in
§ 0.4 models that use much more sophisticated information like the
S 02 three-dimensional structure of proteins.
& A DRT prediction model based on information concerning
5 0.0 1 the three-dimensional structure of proteins was proposed by
5 o2 Lienqueo et al[10]. They selected the Miyazawa and Jernigan
hydrophobicity vector in the process of adjusting the parameters
W x> o W T e of their model. In that context, we showed that a model (called
% < §_ 3 3 2 = ‘:’ ¢ @ § 2 DRT 0), constructed using the Wetz and Scheraga vector, is bet-
Protein ter, since the Jack Knife estimation of the prediction error was

38.2% smaller than the one based on the Miyazawa and Jernigan
tion time (DRT) and DRT estimated by the DRT 0 mocm) and the DRT Ill Q/ectqr. We used the Jack Knife methodology due it estimates the
model (). The experimental DRT@), and the dimensionless length)(are predlctlon error of the model through the dEterm|nat_|0n of the
also shown. impact of the removal of each one of the elements in the data

Fig. 4. Plot of the residual error between the experimental dimensionless rete
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